Коэффициент корреляция в excel

Алан-э-Дейл       04.09.2023 г.

Оглавление

Интерпретация результата вычисления по Пирсону

Величина коэффициента линейной корреляции Пирсона не может превышать +1 и быть меньше чем -1. Эти два числа +1 и -1 – являются границами для коэффициента корреляции. Когда при расчете получается величина большая +1 или меньшая -1 – следовательно, произошла ошибка в вычислениях.

Если коэффициент корреляции по модулю оказывается близким к 1, то это соответствует высокому уровню связи между переменными.

Если же получен знак минус, то большей величине одного признака соответствует меньшая величина другого. Иначе говоря, при наличии знака минус, увеличению одной переменной (признака, значения) соответствует уменьшение другой переменной. Такая зависимость носит название обратно пропорциональной зависимости

Эти положения очень важно четко усвоить для правильной интерпретации полученной корреляционной зависимости

Задачи корреляционного анализа

Исходя из приведенных выше определений, можно сформулировать следующие задачи описываемого метода: получить информацию об одной из искомых переменных с помощью другой; определить тесноту связи между исследуемыми переменными.

Корреляционный анализ предполагает определение зависимости между изучаемыми признаками, в связи с чем задачи корреляционного анализа можно дополнить следующими:

  • выявление факторов, оказывающих наибольшее влияние на результативный признак;
  • выявление неизученных ранее причин связей;
  • построение корреляционной модели с ее параметрическим анализом;
  • исследование значимости параметров связи и их интервальная оценка.

Множественный коэффициент корреляции в Excel (Эксель)

Коэффициент корреляции используется в том случае, когда нужно определить значение зависимости между значениями. Позже эти данные задают в одной таблице которая определяется как матрица корреляции. С помощью программы Microsoft Excel можно сделать расчёт корреляции.

Коэффициент корреляции определяется некоторыми данными. Если уровень показателя составляет от 0 до 0.3, то в таком случае связи нет. Если показатель составляет от 0.3 до 0.5 — это слабая связь. Если показатель доходит до 0.7, то связь средняя. Высокой можно назвать когда показатель достигает отметки 0.7-0.9. Если показатель составляет 1 — это наиболее сильная связь.

Первым делом нужно подключить пакет анализа данных. Без его активации дальнейшие действия нельзя провести. Подключить его можно открыв раздел «Главная» и в меню выбрать «Параметры».

Далее откроется новое окно. В нём нужно выбрать «Надстройки» и в поле управления параметрами выбрать среди элементов списка «Надстройки Excel»После запуска окна параметров посредством его левого вертикального меню переходим в раздел «Надстройки». После этого нажимаем «Перейти».

Далее откроется новое окно надстроек. Находим в списке «Пакет анализа» и ставим галочку. После этого подтверждаем действие. И пакет анализа данных будет подключён для документа Excel.

После этих действий можно начать работу. Создана таблица с данными и на её примере сделаем нахождение множественного коэффициента корреляции.Для начала откроем раздел «Данные» и среди инструментария выбираем «Анализ данных».

Откроется специальное окно с инструментами для анализа. Выбираем «Корреляция» и подтверждаем действие.

Перед пользователем появится новое окно с параметрами. Как входной интервал задается диапазон значений в таблице. Задать можно как в ручную так и выделив данные, которые будут отображены в специальном поле. Также можно разгруппировать элементы таблицы. Вывод сделаем на текущей странице, а значит в настройках параметра вывода выбираем «Выходной интервал». После этого подтверждаем действие.

Результатом будет отображение корреляционной матрицы с данными с различными значениями. Все взаимосвязи имеют высокий уровень.

Как рассчитать коэффициент корреляции

Давайте продемонстрируем механизм получения коэффициента корреляции на реальном кейсе. Допустим, у нас есть таблица с информацией о суммах продаж и рекламу. Нам нужно понять, в какой степени количество продаж и количество денег, которые были использованы на продвижение, взаимосвязаны.

Способ 1. Определение корреляции с помощью Мастера Функций

Функция КОРРЕЛ – один из самых простых методов, как можно реализовать поставленную задачу. В своем общем виде этот оператор имеет следующий вид: КОРРЕЛ(массив1;массив2). Как же ее ввести? Для этого нужно осуществлять следующие действия:

  1. С помощью левой кнопки мыши выделяем ту ячейку, в которой будет находиться получившийся коэффициент корреляции. После этого находим слева от строки формул кнопку fx, которая откроет инструмент ввода функций. 
  2. Далее выбираем категорию «Полный алфавитный перечень», в котором ищем функцию КОРРЕЛ. Как видно из названия категории, все названия функций располагаются в алфавитном порядке. 
  3. Далее открывается окно ввода параметров функции. У нас два основных аргумента, каждый из которых являет собой массив данных, которые сравниваются между собой. В поле «Массив 1» указываем координаты первого диапазона, а в поле «Массив 2» – адрес второго диапазона. Для ввода данных массива, используемого для расчета, достаточно выделить нажать левой кнопкой мыши по соответствующему полю и выделить правильный диапазон. 
  4. После того, как мы введем данные в аргументы, нажимаем кнопку «ОК», чем подтверждаем совершенные действия.

После выполнения описанных выше шагов мы видим в ячейке, выбранной нами на первом этапе, коэффициент корреляции. В нашем примере он составляет 0,97, что указывает на очень сильно выраженную взаимосвязь между данными двух диапазонов. 

Способ 2. Вычисление корреляции с помощью пакета анализа

Также довольно неплохой инструмент для определения корреляции между двумя диапазонами – пакет анализа. Но перед тем, как его использовать, нам надо его включить. Для этого выполняем следующие действия:

  1. Нажимаем на кнопку «Файл», которая находится в левом верхнем углу сразу возле вкладки «Главная». 
  2. После этого открываем раздел с настройками. 
  3. В меню слева переходим в предпоследний пункт, озаглавленный, как «Надстройки». Делаем левый клик по соответствующей надписи. 
  4. Открывается окно управления надстройками. Нам нужно переключить поле ввода, находящееся внизу, на пункт «Надстройки Excel» и нажать на «Перейти». Если это поле уже находится в таком положении, то не выполняем никаких изменений. 
  5. Затем включаем пакет анализа в настройках. Для этого ставим соответствующую галочку и нажимаем на кнопку «ОК». 

Все, теперь наша надстройка включена. Теперь мы во вкладке «Данные» можем увидеть кнопку «Анализ данных». Если она появилась, то мы все сделали правильно. Нажимаем на нее. 

Появляется перечень с выбором разных способов анализа информации. Нам следует выбрать пункт «Корреляция» и нажать на «ОК». 

Затем нам нужно ввести настройки. Основное отличие этого метода от предыдущего заключается в том, что нам нужно вводить полностью диапазон, а не разрывать его на две части. В нашем случае, это информация, указанная в двух столбцах «Затраты на рекламу» и «Величина продаж».

Не вносим никаких изменений в параметр «Группирование». По умолчанию выставлен пункт «По столбцам», и он правильный. Эта настройка определяет, каким образом программа будет разбивать данные. Если же наши данные были бы представлены в двух рядах, то надо было бы изменить этот пункт на «По строкам».

В настройках вывода уже стоит пункт «Новый рабочий лист». То есть, информация о корреляции будет располагаться на отдельном листе. Пользователь может настроить место самостоятельно с помощью соответствующего переключателя – на текущий лист или в отдельный файл. Проверяем, все ли настройки были введены правильно. Если да, подтверждаем свои действия нажатием на клавишу «ОК».

Поскольку мы оставили поле с данными о том, куда будут выводиться результаты, таким, каким оно было, мы переходим на новый лист. На нем можно найти коэффициент корреляции. Конечно, он такой же самый, как был в предыдущем методе – 0,97. Причина этого в том, что вычисления производятся одинаковые, исходные данные мы также не меняли. Просто разными методами, но не более. 

Таким образом, Эксель дает сразу два метода осуществления корреляционного анализа. Как вы уже понимаете, в результате вычислений итог получится таким же. Но каждый пользователь может выбрать тот метод расчета, который ему больше всего подходит.

Коэффициент парной корреляции в Excel

​ полностью.​ к 0,5 или​=КОРРЕЛ(массив1;массив2)​ В связи с​ зарплаты.​ данные сгруппированы в​ х и хсредн.​ вместе.​ Что справедливо.​

​ «Перейти». Жмем.​ приоритеты. И основываясь​ в процессе обработки​ поле окна​ нём в позицию​ и столбцов располагаются​ –​ одной величины от​Теперь давайте попробуем посчитать​ -0,5, два свойства​Описание аргументов:​ этим полагаться только​Результат расчетов:​ столбцы). Выходной интервал​ Используем математический оператор​Пример:​​Открывается список доступных надстроек.​ на главных факторах,​ данных инструментом​«Корреляция»​

Расчет коэффициента корреляции в Excel

​«Надстройки Excel»​ соответствующие коэффициенты корреляции.​«По столбцам»​ другой.​ коэффициент корреляции на​

​ слабо прямо или​массив1 – обязательный аргумент,​

​ на значение коэффициента​Полученный результат близок к​ – ссылка на​ «-».​Строим корреляционное поле: «Вставка»​Корреляционный анализ помогает установить,​ Выбираем «Пакет анализа»​ прогнозировать, планировать развитие​«Корреляция»​

​.​, если отображен другой​ Давайте выясним, как​

  1. ​, так как у​Кроме того, корреляцию можно​
  2. ​ конкретном примере. Имеем​ обратно взаимосвязаны друг​ содержащий диапазон ячеек​ корреляции в данном​ 1 и свидетельствует​
  3. ​ ячейку, с которой​
  4. ​Теперь перемножим найденные разности:​ — «Диаграмма» -​ есть ли между​
  5. ​ и нажимаем ОК.​ приоритетных направлений, принимать​в программе Excel.​Так как у нас​ параметр. После этого​
  6. ​ можно провести подобный​ нас группы данных​ вычислить с помощью​ таблицу, в которой​ с другом соответственно.​ или массив данных,​
  7. ​ случае нельзя. То​ о сильной прямой​ начнется построение матрицы.​

​Найдем сумму значений в​ «Точечная диаграмма» (дает​

​ показателями в одной​После активации надстройка будет​ управленческие решения.​Как видим из таблицы,​ факторы разбиты по​ клацаем по кнопке​ расчет с помощью​ разбиты именно на​ одного из инструментов,​ помесячно расписана в​

​Если коэффициент корреляции близок​ которые характеризуют изменения​

​ есть, коэффициент корреляции​ взаимосвязи между исследуемыми​ Размер диапазона определится​ данной колонке. Это​ сравнивать пары). Диапазон​ или двух выборках​ доступна на вкладке​Регрессия бывает:​ коэффициент корреляции фондовооруженности​

Матрица парных коэффициентов корреляции в Excel

​«Перейти…»​ инструментов Excel.​ два столбца. Если​ который представлен в​ отдельных колонках затрата​ к 0 (нулю),​ свойства какого-либо объекта.​ не характеризует причинно-наследственную​

​ величинами. Однако прямо​ автоматически.​ и будет числитель.​ значений – все​ связь. Например, между​

  1. ​ «Данные».​линейной (у = а​(Столбец 2​ по строкам, то​, находящейся справа от​Скачать последнюю версию​ бы они были​ пакете анализа. Но​ на рекламу и​ между двумя исследуемыми​
  2. ​массив2 – обязательный аргумент​ связь.​ пропорциональной зависимости между​После нажатия ОК в​Для расчета знаменателя разницы​ числовые данные таблицы.​ временем работы станка​Теперь займемся непосредственно регрессионным​ + bx);​) и энерговооруженности (​ в параметре​ указанного поля.​ Excel​
  3. ​ разбиты построчно, то​ прежде нам нужно​ величина продаж. Нам​ свойствами отсутствует прямая​ (диапазон ячеек либо​Пример 3. Владелец канала​ ними нет, то​ выходном диапазоне появляется​

​ y и y-средн.,​Щелкаем левой кнопкой мыши​ и стоимостью ремонта,​ анализом.​параболической (y = a​Столбец 1​«Группирование»​Происходит запуск небольшого окошка​

  1. ​ этот инструмент активировать.​ предстоит выяснить степень​
  2. ​ либо обратная взаимосвязи.​ массив), элементы которого​ YouTube использует социальную​ есть на увеличение​ корреляционная матрица. На​ х и х-средн.​ по любой точке​ ценой техники и​Открываем меню инструмента «Анализ​
  3. ​ + bx +​) составляет 0,92, что​выставляем переключатель в​«Надстройки»​ в Экселе​ переставить переключатель в​

​Переходим во вкладку​ зависимости количества продаж​

​Примечание 3: Для понимания​ характеризуют изменение свойств​ сеть для рекламы​ средней зарплаты оказывали​ пересечении строк и​

exceltable.com>

Функция ПИРСОН пошаговая инструкция

Коэффициент корреляции является самым удобным показателем сопряженности количественных признаков.

Задача: Определить линейный коэффициент корреляции Пирсона.

  1. В таблице приведены данные для группы курящих людей. Первый массив х — представляет собой возраст курящего, второй массив y представляет собой количество сигарет, выкуренных в день.
  2. Выберем ячейку В4 в которой должен будет посчитаться результат и нажмем кнопку мастер функций fx (SHIFT+F3).
  3. В группе Статистические выберем функцию PEARSON.
  4. Выделим Массив 1 – возраст курящего, затем Массив 2 – число сигарет, выкуренных в день.
  5. Нажмем кнопку ОК и увидим критерий нормального распределения Пирсона в ячейке В4.

Таким образом, по результату вычисления статистическим выводом эксперимента выявлена отрицательная зависимость между возрастом и количеством выкуренных сигарет в день.

Как проводится корреляционный анализ в Excel

Суть данного анализа сводится к выявлению зависимостей между различными факторами, представленными в таблицах. Таким образом можно определить как повлияет уменьшение или увеличение определенных показателей на исследуемые данные.

Если была выявлена зависимость, то определяется уже коэффициент корреляции. Коэффициент будет варьироваться в значениях от -1 до +1. При положительной корреляции, увеличение одного показателя повлечет за собой увеличение другого. Соответственно при отрицательной будет уменьшение. Чем больше значение корреляции, тем сильнее оказываемое влияние.

Для примера возьмем таблицу, где представлена прямая зависимость одних показателей от других. Например, зарплата сотрудников и величина прибыли компании. Далее рассмотрим два способа реализации корреляционного анализа на примере этой таблицы.

Вариант 1: Вызов через Мастер функций

В отличии от некоторых других типов анализов, корреляционный анализ можно вызвать с помощью функций. За него отвечает функция КОРРЕЛ вида: КОРРЕЛ(массив1;массив2):

  1. Выделите ячейку в таблицу, куда хотите вставить полученный результат. В строке ввода формул воспользуйтесь значком функции.

Откроется окно мастера функций. В поле “Категория” нужно поставить значение “Полный алфавитный перечень”, чтобы отобразились все доступные для применения функции. Там отыщите пункт “КОРРЕЛ” нажмите по нему и затем на кнопку “Ок”.

Вам потребуется заполните в окошке настройки функции два поля, то есть указать два массива ячеек. В первый массив укажите номера ячеек, зависимость которых следует определить. Для рассматриваемой таблицы это будет массив столбца дохода компании. Номера можно вписать вручную или выделить их, кликнув по иконке таблицы в поле.
Во втором же массиве потребуется указать перечень ячеек, которые предположительно должны оказывать влияние на первый массив. В рассматриваемой таблице это величина зарплат сотрудников.

Закончив с заполнением нажмите кнопку “Ок”. Подсчет будет произведен автоматически и выведен в указанной ранее ячейке.
Если полученный коэффициент оказался больше +/-0.5, то это значит, что одна величина сильно зависима от другой.

Вариант 2: Применение пакета анализа

Вы можете использовать уже заданный шаблон корреляционного анализа, используя один из представленных пакетов анализа. По умолчанию пакеты анализа в Excel отключены, поэтому вам потребуется их включать отдельно.

  1. Перейдите во вкладку “Файл”, что расположена в верхней части окна.

В левой части переключитесь в раздел “Параметры”.
Откройте подраздел “Надстройки”, что находятся в левой части окна с параметрами.
У строки “Управление”, что расположена в нижней части открывшегося окна, установите значение “Надстройки Excel”. Нажмите “Перейти”, чтобы увидеть перечень доступных надстроек.

В открывшемся окне установите галочку у пункта “Пакет анализа” и нажмите “Ок”. После этого у вас должны появится дополнительные инструменты в верхней панели Excel.
Нужные нам инструменты расположена во вклакде “Данные”. Там должен будет появится дополнительный блок инструментов — “Анализ”. Воспользуйтесь в нем единственным инструментом — “Анализом данных”.

Открывается список с различными вариантами анализа данных. Укажите пункт “Корреляция”. Нажмите “Ок” для применения.
В открывшемся окошке настройки анализа уже потребуется заполнить только поле “Входной интервал”. Туда добавляется сразу два массива. В нашем случае это столбцы с зарплатой и доходом фирмы.
В блоке ниже можно указать, куда будет выводится результат. По умолчанию он выводит на новый рабочий лист, но вы можете настроить вывод в новую книгу или в определенных ячейках на текущем листе. Нажмите для применения и расчетов.
В итоге вы получите тот же результат, что и в первом способе. Единственное, в некоторых таблицах, при обработке большего количества данных значений может быть гораздо больше (в основном носят вспомогательный характер).

Первый рассмотренный нами способ подойдет для большинства таблиц, в то время как второй больше подходит для таблиц с большим перечнем данных, где еще желательно отследить логику проводимого анализа.

Как рассчитать коэффициент корреляции в Excel

Если коэффициент равен 0, это говорит о том, что взаимосвязь между значениями отсутствует. Чтобы найти взаимосвязь между переменными и у, воспользуйтесь встроенной функцией Microsoft Excel «КОРРЕЛ». Например, для «Массив1» выделите значения у, а для «Массив2» выделите значения х. В итоге вы получите рассчитанный программой коэффициент корреляции. Далее необходимо вычислить разницу между каждым x и xср, и yср. В выбранных ячейках напишите формулы x-x, y-. Не забудьте закрепить ячейки со средними значениями. Полученный результат и будет искомым коэффициентом корреляции.

Приведенная выше формула расчета коэффициента Пирсона, показывает насколько трудоемок этот процесс если выполнять его вручную. Второе, порекомендуйте, пожалуйста, какой вид корреляционного анализа можно использовать для разных выборок с большим разбросом данных? Как мне статистически доказать достоверность отличий между группой старше 60 лет и всеми остальными?

Что такое коэффициент корреляции?

Различные признаки могут быть связаны между собой.Выделяют 2 вида связи между ними:

  • функциональная;
  • корреляционная.

Корреляция в переводе на русский язык – не что иное, как связь. В случае корреляционной связи прослеживается соответствие нескольких значений одного признака нескольким значениям другого признака. В качестве примеров можно рассмотреть установленные корреляционные связи между:

  • длиной лап, шеи, клюва у таких птиц как цапли, журавли, аисты;
  • показателями температуры тела и частоты сердечных сокращений.

Для большинства медико-биологических процессов статистически доказано присутствие этого типа связи.

Статистические методы позволяют установить факт существования взаимозависимости признаков. Использование для этого специальных расчетов приводит к установлению коэффициентов корреляции (меры связанности).

Такие расчеты получили название корреляционного анализа. Он проводится для подтверждения зависимости друг от друга 2-х переменных (случайных величин), которая выражается коэффициентом корреляции.

Использование корреляционного метода позволяет решить несколько задач:

  • выявить наличие взаимосвязи между анализируемыми параметрами;
  • знание о наличии корреляционной связи позволяет решать проблемы прогнозирования. Так, существует реальная возможность предсказывать поведение параметра на основе анализа поведения другого коррелирующего параметра;
  • проведение классификации на основе подбора независимых друг от друга признаков.

Для переменных величин:

  • относящихся к порядковой шкале, рассчитывается коэффициент Спирмена;
  • относящихся к интервальной шкале – коэффициент Пирсона.

Это наиболее часто используемые параметры, кроме них есть и другие.

Значение коэффициента может выражаться как положительным, так и отрицательными.

В первом случае при увеличении значения одной переменной наблюдается увеличение второй. При отрицательном коэффициенте – закономерность обратная.

Строим диаграмму рассеяния (корреляционное поле) и график линии регрессии.

4.1.
Находим минимальный и максимальный элемент выборки X это 18-й и 15-й элементы соответственно, x min = 22.10000 и x max = 26.60000.

4.2.
Находим минимальный и максимальный элемент выборки Y это 2-й и 18-й элементы соответственно, y min = 29.40000 и y max = 31.60000.

4.3.
На оси абсцисс выбираем начальную точку чуть левее точки x 18
= 22.10000, и такой масштаб, чтобы на оси
поместилась точка x 15
= 26.60000 и отчетливо различались остальные точки.

4.4.
На оси ординат выбираем начальную точку чуть левее точки y 2
= 29.40000, и такой масштаб, чтобы на оси
поместилась точка y 18
= 31.60000 и отчетливо различались остальные точки.

4.5.
На оси абсцисс размещаем значения x k
, а на оси ординат значения y k
.

4.6.
Наносим точки (x 1
, y 1
),
(x 2
, y 2
),…,(x 26
, y 26
)
на координатную плоскость. Получаем диаграмму рассеяния (корреляционное поле), изображенное на рисунке ниже.

4.7.
Начертим линию регрессии.

Для этого найдем две различные точки с координатами (x r1 , y r1) и (x r2 , y r2)
удовлетворяющие уравнению (3.6), нанесем их на координатную плоскость и проведем через них прямую. В качестве абсциссы первой точки возьмем значение x min = 22.10000. Подставим значение x min в уравнение (3.6),
получим ординату первой точки. Таким образом имеем точку с координатами (22.10000, 31.96127). Аналогичным образом получим координаты второй точки, положив в качестве абсциссы значение x max = 26.60000.
Вторая точка будет: (26.60000, 30.15970).

Линия регрессии показана на рисунке ниже красным цветом

Обратите внимание, что линия регрессии всегда проходит через точку средних значений величин Х и Y, т.е. с координатами (M x , M y)

Утилита, которая широко используется во многих компаниях и на предприятиях. Реалии таковы, что практически любой работник должен в той или иной мере владеть Экселем, так как эта программа применяется для решения очень широкого спектра задач. Работая с таблицами, нередко приходится определять, связаны ли между собой определённые переменные. Для этого используется так называемая корреляция. В этой статье мы подробно рассмотрим, как рассчитать коэффициент корреляции в Excel. Давайте разбираться. Поехали!

Начнём с того, что такое коэффициент корреляции вообще. Он показывает степень взаимосвязи между двумя элементами и всегда находится в диапазоне от -1 (сильная обратная взаимосвязь) до 1 (сильная прямая взаимосвязь). Если коэффициент равен 0, это говорит о том, что взаимосвязь между значениями отсутствует.

Теперь, разобравшись с теорией, перейдём к практике. Чтобы найти взаимосвязь между переменными и у, воспользуйтесь встроенной функцией Microsoft Excel «КОРРЕЛ». Для этого нажмите на кнопку мастера функций (она расположена рядом с полем для формул). В открывшемся окне выберите из списка функций «КОРРЕЛ». После этого задайте диапазон в полях «Массив1» и «Массив2». Например, для «Массив1» выделите значения у, а для «Массив2» выделите значения х. В итоге вы получите рассчитанный программой коэффициент корреляции.

Следующий способ будет актуален для студентов, от которых требуют найти зависимость по заданной формуле. Прежде всего, нужно знать средние значения переменных x и y. Для этого выделите значения переменной и воспользуйтесь функцией «СРЗНАЧ». Далее необходимо вычислить разницу между каждым x и x ср, и y ср. В выбранных ячейках напишите формулы x-x, y-. Не забудьте закрепить ячейки со средними значениями. Затем растяните формулу вниз, чтобы она применилась и к остальным числам.

Теперь, когда есть все необходимые данные, можно посчитать корреляцию. Перемножьте полученные разности таким образом: (x-x ср) * (y-y ср). После того как вы получите результат для каждой из переменных, просуммируйте полученные числа при помощи функции автосуммы. Таким образом рассчитывается числитель.

Теперь перейдём к знаменателю. Посчитанные разности нужно возвести в квадрат. Для этого в отдельной колонке введите формулы: (x-x ср) 2 и (y-y ср) 2 . Затем растяните формулы на весь диапазон. После, при помощи кнопки «Автосумма», найдите сумму по всем колонкам (для x и для y). Осталось перемножить найденные суммы и извлечь из них квадратный корень. Последний шаг — поделите числитель на знаменатель. Полученный результат и будет искомым коэффициентом корреляции.

Корреляционный анализ: формула

Порядок расчета коэффициента корреляции:

  1. Собрать данные исследуемых переменных — “X” и “Y”.
  2. Сгруппировать данные двух исследуемых переменных в столбцы (см. пример ниже).
  3. Добавить столбцы “ХХ”, “XY”, “YY”.
  4. Провести расчеты для столбцов (перемножение данных: Х*Х; Х*У; У*У).
  5. Просуммировать данные столбцов. 
  6. Внести полученные данные в формул расчета. 

Пример расчета коэффициента корреляции

Рассмотрим пример взаимосвязи цены и проданных единиц продукции, потому что самое популярное предположение — чем ниже цена, тем больше количество проданных единиц продукции

Учитывая, важность получаемой выручки, проверим данную гипотезу по формуле, которая указана выше. В таблице представлена условная цена и количество проданных единиц продукции по заданной цене

Рассчитаем последовательно остальные данные необходимые для коэффициента корреляции.

Полученные расчеты используем в формуле и получаем значение корреляции, равное (-0,412). Данный результат будет означать, что взаимосвязь между ценой и количеством проданных единиц товара не существенная. 

Корреляционный анализ в MS Excel

Рассчитаем коэффициент корреляции для вышеприведенного примера в MS Excel. Для это необходимо занести два столбца с переменными данными.

Далее, открываем меню “Формулы”, нажимаем кнопку “Вставить функцию” и через мастера функций находим функцию PEARSON.

Выделяем область данных для полей “Массив1” и “Массив 2”, то есть столбец “Х” и столбец “У”. В левом нижнем углу видим результат, равный ( ‑0,412), что полностью соответствует вышеприведенным расчетам.

Гость форума
От: admin

Эта тема закрыта для публикации ответов.