Оглавление
Расчет среднеквадратичного (стандартного) отклонения
Формулы вычисления стандартного отклонения
Где:
σ — стандартное отклонение,
xi — величина отдельного значения выборки,
μ — среднее арифметическое выборки,
n — размер выборки.
Эта формула применяется, когда анализируются все значения выборки.
Где:
S — стандартное отклонение,
n — размер выборки,
xi — величина отдельного значения выборки,
xср — среднее арифметическое выборки.
Эта формула применяется, когда присутствует очень большой размер выборки, поэтому на анализ обычно берётся только её часть.
Единственная разница с предыдущей формулой: “n — 1” вместо “n”, и обозначение «xср» вместо «μ».
Разница между формулами S и σ («n» и «n–1»)
Состоит в том, что мы анализируем — всю выборку или только её часть:
- только её часть – используется формула S (с «n–1»),
- полностью все данные – используется формула σ (с «n»).
Как рассчитать стандартное отклонение?
Пример 1 (с σ)
Рассмотрим данные о запасе какого-то товара на складах Предприятия Б.
День 1 | День 2 | День 3 | День 4 | |
Пред.Б | 15 | 26 | 15 | 24 |
Если значений выборки немного (небольшое n, здесь он равен 4) и анализируются все значения, то применяется эта формула:
Применяем эти шаги:
1. Найти среднее арифметическое выборки:
μ = (15 + 26 + 15+ 24) / 4 = 20
2. От каждого значения выборки отнять среднее арифметическое:
x1 — μ = 15 — 20 = -5
x2 — μ = 26 — 20 = 6
x3 — μ = 15 — 20 = -5
x4 — μ = 24 — 20 = 4
3. Каждую полученную разницу возвести в квадрат:
(x1 — μ)² = (-5)² = 25
(x2 — μ)² = 6² = 36
(x3 — μ)² = (-5)² = 25
(x4 — μ)² = 4² = 16
4. Сделать сумму полученных значений:
Σ (xi — μ)² = 25 + 36+ 25+ 16 = 102
5. Поделить на размер выборки (т.е. на n):
(Σ (xi — μ)²)/n = 102 / 4 = 25,5
6. Найти квадратный корень:
√((Σ (xi — μ)²)/n) = √ 25,5 ≈ 5,0498
Пример 2 (с S)
Задача усложняется, когда существуют сотни, тысячи или даже миллионы данных. В этом случае берётся только часть этих данных и анализируется методом выборки.
У Андрея 20 яблонь, но он посчитал яблоки только на 6 из них.
Популяция — это все 20 яблонь, а выборка — 6 яблонь, это деревья, которые Андрей посчитал.
Яблоня 1 | Яблоня 2 | Яблоня 3 | Яблоня 4 | Яблоня 5 | Яблоня 6 |
9 | 2 | 5 | 4 | 12 | 7 |
Так как мы используем только выборку в качестве оценки всей популяции, то нужно применить эту формулу:
Математически она отличается от предыдущей формулы только тем, что от n нужно будет вычесть 1. Формально нужно будет также вместо μ (среднее арифметическое) написать X ср.
Применяем практически те же шаги:
1. Найти среднее арифметическое выборки:
Xср = (9 + 2 + 5 + 4 + 12 + 7) / 6 = 39 / 6 = 6,5
2. От каждого значения выборки отнять среднее арифметическое:
X1 – Xср = 9 – 6,5 = 2,5
X2 – Xср = 2 – 6,5 = –4,5
X3 – Xср = 5 – 6,5 = –1,5
X4 – Xср = 4 – 6,5 = –2,5
X5 – Xср = 12 – 6,5 = 5,5
X6 – Xср = 7 – 6,5 = 0,5
3. Каждую полученную разницу возвести в квадрат:
(X1 – Xср)² = (2,5)² = 6,25
(X2 – Xср)² = (–4,5)² = 20,25
(X3 – Xср)² = (–1,5)² = 2,25
(X4 – Xср)² = (–2,5)² = 6,25
(X5 – Xср)² = 5,5² = 30,25
(X6 – Xср)² = 0,5² = 0,25
4. Сделать сумму полученных значений:
Σ (Xi – Xср)² = 6,25 + 20,25+ 2,25+ 6,25 + 30,25 + 0,25 = 65,5
5. Поделить на размер выборки, вычитав перед этим 1 (т.е. на n–1):
(Σ (Xi – Xср)²)/(n-1) = 65,5 / (6 – 1) = 13,1
6. Найти квадратный корень:
S = √((Σ (Xi – Xср)²)/(n–1)) = √ 13,1 ≈ 3,6193
Шаги
Метод 1 из 4:
Данные
-
1
Запишите числовые значения, которые вы собираетесь анализировать.
Например, 5 школьникам был предложен письменный тест. Их результаты (в баллах по 100 бальной системе): 12, 55, 74, 79 и 90 баллов.
Мы проанализируем случайно подобранные числовые значения в качестве примера.
Метод 2 из 4:
Среднее значение
-
1
Для того чтобы посчитать среднее значение, нужно сложить все имеющиеся числовые значения и разделить получившееся число на их количество.
- Среднее значение (μ) = Σ/N, где Σ сумма всех числовых значений, а N количество значений.
- То есть, в нашем случае μ равно (12+55+74+79+90)/5 = 62.
Метод 3 из 4:
Среднее квадратичное отклонение
1
Мы будем считать среднее отклонение.Для вышеуказанного примера это квадратный корень из [((12-62)^2 + (55-62)^2 + (74-62)^2 + (79-62)^2 + (90-62)^2)/(5)] = 27,4
(Обратите внимание, что если это выборочное среднеквадратическое отклонение, то делить нужно на N-1, где N количество значений.)
Среднее отклонение = σ = квадратный корень из [(Σ((X-μ)^2))/(N)]
Метод 4 из 4:
Средняя погрешность среднего значения
-
1
Считаем среднюю погрешность (среднего значения).
Если в нашем примере 5 школьников, а всего в классе 50 школьников, и среднее отклонение, посчитанное для 50 школьников равно 17 (σ = 21), средняя погрешность = 17/кв. корень(5) = 7.6.
Это оценка того, насколько сильно округляется общее среднее значение. Чем больше числовых значений, тем меньше средняя погрешность, тем точнее среднее значение. Для расчета погрешности надо разделить среднее отклонение на корень квадратный от N. Стандартная погрешность = σ/кв.корень(n).
Советы
- Расчеты среднего значения, среднего отклонения и погрешности годятся для анализа равномерно распределенных данных. Среднее отклонение математического среднего значения распределения относится приблизительно к 68% данных, 2 средних отклонения – к 95% данных, а 3 – к 99.7% данных. Стандартная погрешность же уменьшается при увеличении количества значений.
- Простой в использовании калькулятор для расчета среднего отклонения.
Что такое стандартное отклонение
Но… все будет немного иначе, если мы будем анализировать выборку данных. В нашем примере мы рассматривали генеральную совокупность. То есть наши 5 собак были единственными в мире собаками, которые нас интересовали.
Но если данные являются выборкой (значениями, которые выбрали из большой генеральной совокупности), тогда вычисления нужно вести иначе.
Если есть значений, то:
- Когда мы имеем дело с генеральной совокупностью при вычислении дисперсии, мы делим на (как и было сделано в рассмотренном нами примере).
- Когда мы имеем дело с выборкой, при вычислении дисперсии делим на .
Все остальные расчеты производятся аналогично, в том числе и определение среднего.
Например, если наших пять собак – только выборка из генеральной совокупности собак (всех собак на планете), мы должны делить на 4, а не на 5, а именно:
Дисперсия выборки = мм2.
При этом стандартное отклонение по выборке равно мм (округлено до ближайшего целого значения).
Можно сказать, что мы произвели некоторую “коррекцию” в случае, когда наши значения являются всего лишь небольшой выборкой.
Применение стандартного отклонения:
Стандартное отклонение широко используется для тестирования моделей на реальных данных экспериментально и в промышленных условиях. Его можно использовать, чтобы найти минимальную и максимальную стоимость некоторого продукта, когда продукт имеет высокий процент. Если значения выходят за пределы допустимого диапазона, то необходимо изменить производство, чтобы улучшить качество продукта. Этот показатель дисперсии широко используется в различных областях науки, например, в прогнозировании погоды для прогнозирования погоды, в финансах для измерения колебаний цен на продукцию и многих других. Вы можете легко определить нормальный или средний диапазон набора данных чего угодно с помощью решателя стандартных отклонений. Это широко используется в области социальных наук в исследовательских целях для анализа статистики здоровья, результатов тестов и демонстрации различных моделей культурного поведения.
Стандартное отклонение в гистограммах:
Набор данных представлен в виде гистограммы, которая представляет числа в виде полос разной высоты. На гистограмме столбцы представляют диапазон набора данных. Более длинный столбец представляет более высокий диапазон набора данных, в то время как более широкий столбец указывает на большее стандартное отклонение, а более узкий столбец указывает на меньшее стандартное отклонение. Приведем пример:
Тестовые отметки 600 студентов со средним значением 100, ориентация гистограммы следующая:
Оценки за тесты по математике SD = 8,5
Оценки по английскому языку SD = 18,3
Оценки по физике SD = 25,8
По всем трем предметам тест по физике имеет самое высокое стандартное отклонение.
Если цена не соответствует рынку
Бывает, что рассчитанная тем или иным методом НМЦК все же имеет существенное отклонение от средней цены по рынку, и участники закупки обращают на это внимание. Тогда они могут обжаловать цену контракта в ФАС. Или же контролирующий орган сам может обратить внимание на цену закупки, которая явно выбивается из общего ряда
Если такое произойдет, и заказчик не сможет объяснить антимонопольному органу свою цену, то закупка может быть отменена
Или же контролирующий орган сам может обратить внимание на цену закупки, которая явно выбивается из общего ряда. Если такое произойдет, и заказчик не сможет объяснить антимонопольному органу свою цену, то закупка может быть отменена
Как же поступить поставщику в случае, если он заметил неадекватную цену? Если цена явно занижена, можно либо пройти мимо этой закупки, либо запросить у заказчика разъяснений. А иногда целесообразно принять участие в такой закупке. В случае победы (а шансы велики, ведь конкурентов будет минимум) участник сможет добавить в свой актив качественно исполненный контракт, а это положительно отразится на его репутации.
Если цена завышена, то закупка будет интересна многим. Не исключено, что и антимонопольной службе. Тогда заказчику придется обосновывать расчет НМЦК или же объявить новую закупку с более адекватной ценой. Но даже если ФАС не заметит завышенной НМЦК, высока вероятность того, что в ходе торгов она будет «сбита» до рыночной самими участниками.
Что такое среднеквадратичное отклонение
Рассматривая какие-либо величины или их изменения, используют такие критерии как среднеарифметическая величина и ее отклонение. Различные понятия позволяют оценить разброс измеряемой величины и ее отклонение. К ним относится абсолютная погрешность, которая показывает насколько каждая конкретная величина отличается от среднего значения. Но так как сумма всех абсолютных погрешностей равна нулю, то этот критерий не позволяет показать разброс измеряемых величин. И для решения этой задачи был введен новый показатель — среднее квадратичное отклонение.
Для того чтобы объяснить его смысл необходимо вспомнить некоторые основные математические понятия.
Определение
Средней величиной или средним арифметическим называется число, полученное в результате деления суммы всех величин на их количество.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут
Пример
Среднеарифметическое для 3 чисел b1, b2 и b3 определяется как:
\(M=\frac{b_1+b_2+b_3}3\)
Со средней величиной непосредственно связана и другая характеристика — математическое ожидание.
Определение
Значение среднего арифметического некоторого множества при стремлении его членов к бесконечности называется математическим ожиданием (М).
А оценкой математического ожидания является среднее арифметическое определенного числа измерений изучаемой величины.
Определение
Вариантой или абсолютной погрешностью называется разность измеряемой величины со средним значением.
Она обозначается греческой буквой D. Для того чтобы найти варианту единичного измерения ai следует отнять от ее значение среднее арифметическое:
\(Da_i=a_i-M\)
Также для оценки единичного измерения используется и относительная погрешность, значение которой выражается в процентах. Ее вычисление проводят по формуле:
\(\sigma=\frac{\left|\triangle a_i\right|}M\times100\%\)
Относительная погрешность каждой величины позволяет отбросить из вариации измерений значения с очень большой погрешностью и проводить дальнейший анализ только величин с незначительной относительной погрешностью.
Характеристикой распределения значений некоторой измеряемой величины является дисперсия (D).
Определение
Дисперсией называется среднее арифметическое квадратов всех абсолютных погрешностей.
Теперь можно дать определение и «среднеквадратичному отклонению».
Определение
Значение корня квадратного из дисперсии случайной величины называется среднеквадратичным отклонением и обозначается «ϭ».
Оно вычисляется по формуле:
\(\sigma=\sqrt{D_{\left|x\right|}}\)
Единицей измерения среднеквадратического отклонения является единица измерения исследуемой величины. Данный критерий используется при измерении линейной функции, статической проверки гипотезы, расчете стандартной ошибки среднего арифметического, а также при построении доверительных интервалов.
коэффициент вариации
– это отношение стандартного отклонения к средней, выраженное в процентах:
И вот теперь совершенно без разницы, в д.е. мы считали:
или в тысячах д.е.:
Примечание: на практике часто считают именно через , но для оценки коэффициента вариации всей генеральной совокупности, конечно же, корректнее использовать исправленное стандартное отклонение .
В статистике существует следующий эмпирический ориентир:
– если показатель вариации составляет примерно 30% и меньше, то статистическая совокупность считается однородной. Это означает, что большинство вариант находится недалеко от средней, и найденное значение хорошо характеризует центральную тенденцию совокупности.
– если показатель вариации составляет существенно больше 30%, то выборка неоднородна, то есть, значительное количество вариант находятся далеко от , и выборочная средняя плохо характеризует типичную варианту. В таких случаях целесообразно рассмотреть , а иногда и перцентили, которые делят вариационный ряд на части, и для каждого участка рассчитать свои показатели. Но это уже немного дебри статистики.
Другое преимущество относительных показателей – это возможность сравнивать разнородные статистические совокупности. Например, множество слонов и множество хомячков. Совершенно понятно, что дисперсия веса слонов по отношению к дисперсии веса хомяков будет просто конской, и их сопоставление не имеет смысла. Но вот анализ коэффициентов вариации веса вполне осмыслен, и может статься, что у слонов он составляет 10%, а у хомячков 40% (пример, конечно, условный). Это говорит о сбалансированном питании и размеренной жизни слонов. А вот хомяки там, то носятся с голодухи по полям, то отъедаются и спят в норах, и поэтому среди них есть много худощавых и много упитанных особей 🙂
Кроме коэффициента вариации, существуют и другие относительные показатели, но в реальных студенческих работах они почти не встречаются, и поэтому я не буду их рассматривать в рамках данного курса.
И сейчас, конечно же, задачки для самостоятельного решения:
Пример 17, на отработку терминов и формул:
а) Стандартное отклонение выборочной совокупности равно 5, а средний квадрат её вариант – 250. Найти выборочную среднюю.
б) Определите среднее квадратическое отклонение, если известно, что средняя равна 260, а коэффициент вариации составляет 30%.
и Пример 18, творческий:
Производство стальных труб на предприятии (тонн) в 1-м полугодии составило:
Определить:
– среднемесячный объем производства;
– среднее квадратическое отклонение;
– коэффициент вариации.
Сделать краткие содержательные выводы. – Да, это тоже типичный пункт статистической задачи!
Обратите внимание, что здесь не понятно, выборочной ли считать эту совокупность или генеральной. И в таких случаях лучше не заниматься домыслами, просто используем обозначения без подстрочных индексов
Вообще, задачи на экономическую и промышленную тематику – самые популярные в статистике, и в моей коллекции их сотни. Но все они до ужаса однотипны, и поэтому я предлагаю их в терапевтической дозировке 🙂
Задание 8
Выполнить расчёты в Экселе – числа уже там, ну а инструкцию я на этот раз не привёл, поскольку люди вы уже опытные.
Краткое решение и ответ в конце урока, который подошёл к концу.
Следующее занятие не за горами, а уже за кочкой:
Решения и ответы:
Пример 17. Решение:
а) Используем формулу . По условию, , . Таким образом:
б) Используем формулу . По условию, , . Таким образом:
Ответ: а) , б)
Пример 18. Решение: вычислим сумму вариант и сумму их квадратов:Найдём среднюю: тонны – среднемесячный объем производства за полугодие.Дисперсию вычислим по формуле:Среднее квадратическое отклонение: тонн.Коэффициент вариации:
Ответ: тонны, тонн,
Краткие выводы: за первое полугодие среднемесячный объём производства труб составил тонны. Низкие показатели вариации говорят о стабильной ситуации на производстве.
(Переход на главную страницу)
Sample size for process control
Oftentimes in process control one needs to estimate the number of samples needed in order to ensure that a process is performing up to specification. Upholding of standards usually happens by computing a confidence interval around the observed sample mean or, equivalently, through comparison with control charts. Since taking measures or estimating compliance with specification can be time consuming, material consuming, and even destructive, it is of utmost importance that quality control is assured with the minimum possible sample size. Our sigma calculator can help you with that — simply switch to «sample size» in the interface. If you want to learn more about the mathematics behind, keep reading.
In order to compute the sample size, one needs to have estimated the standard deviation σ of the characteristic of interest from past samples, needs to set a probability for the estimation procedure to contain the true value of the characteristic (customary values are 90%, 95%, 99%, but the exact value chosen depends on a trade-off between accuracy and cost of estimation), and needs to determine the maximum width of the interval which would satisfy the estimation task.
The latter is half the standard error E, also known as margin of error and is dubbed «maximum error» in the six sigma calculator interface.
The maximum error should certainly be less than the difference between the upper specification limit (UCL) and the lower specification limit (LCL) to be of any practical use. For example, if the upper specification limit for the diameter of a rod is 10.2mm and the lower specification limit is 10.0mm, the maximum error of the estimation procedure cannot be more than 10.2 — 10.0 = 0.2. Usually it is set significantly lower in order to ensure adherence to production standards. If the standard deviation is estimated from previous measurements to be 0.05 (making this a 4σ process), the maximum error can be set to 0.025 (margin of error of 0.0125), meaning that 62 randomly selected samples will need to be measured to ensure compliance with specification with a difference of no more than 0.025 with 95% confidence.
Of course, the above is just an example, but it should give the necessary understanding to make proper use of our six sigma calculator. You should follow the procedures for setting maximum error (or margin of error = 2 · maximum error) applicable to your particular case.
References
Smith, B. (1993) «Making War on Defects», IEEE Spectrum 30(9):43-50; DOI: 10.1109/6.275174
Shewhart, W.A. (1930) «Economic Control Of Quality Of Manufactured Product», Bell Labs Technical Journal 9(2):364-389; DOI: 10.1002/j.1538-7305.1930.tb00373.x
Akerman, T. (2018) «Where is the evidence for sigma shift?» https://www.tamarindtreeconsulting.com/where-is-the-evidence-for-sigma-shift/ , accessed Jul 18, 2019

Эта тема закрыта для публикации ответов.